Cardiac Neuronal Nitric Oxide Synthase Isoform Regulates Myocardial Contraction and Calcium Handling
نویسندگان
چکیده
منابع مشابه
Cardiac neuronal nitric oxide synthase isoform regulates myocardial contraction and calcium handling.
A neuronal isoform of nitric oxide synthase (nNOS) has recently been located to the cardiac sarcoplasmic reticulum (SR). Subcellular localization of a constitutive NOS in the proximity of an activating source of Ca2+ suggests that cardiac nNOS-derived NO may regulate contraction by exerting a highly specific and localized action on ion channels/transporters involved in Ca2+ cycling. To test thi...
متن کاملNeuronal nitric oxide synthase negatively regulates xanthine oxidoreductase inhibition of cardiac excitation-contraction coupling.
Although interactions between superoxide (O(2)(.-)) and nitric oxide underlie many physiologic and pathophysiologic processes, regulation of this crosstalk at the enzymatic level is poorly understood. Here, we demonstrate that xanthine oxidoreductase (XOR), a prototypic superoxide O(2)(.-) -producing enzyme, and neuronal nitric oxide synthase (NOS1) coimmunoprecipitate and colocalize in the sar...
متن کاملConditional neuronal nitric oxide synthase overexpression impairs myocardial contractility.
The role of the neuronal NO synthase (nNOS or NOS1) enzyme in the control of cardiac function still remains unclear. Results from nNOS(-/-) mice or from pharmacological inhibition of nNOS are contradictory and do not pay tribute to the fact that probably spatial confinement of the nNOS enzyme is of major importance. We hypothesize that the close proximity of nNOS and certain effector molecules ...
متن کاملNeuronal nitric oxide synthase signaling within cardiac myocytes targets phospholamban.
Studies have shown that neuronal nitric oxide synthase (nNOS, NOS1) knockout mice (NOS1-/-) have increased or decreased contractility, but consistently have found a slowed rate of intracellular Ca2+ ([Ca2+]i) decline and relengthening. Contraction and [Ca2+]i decline are determined by many factors, one of which is phospholamban (PLB). The purpose of this study is to determine the involvement of...
متن کاملNitric Oxide Regulates Neuronal Activity via Calcium-Activated Potassium Channels
Nitric oxide (NO) is an unconventional membrane-permeable messenger molecule that has been shown to play various roles in the nervous system. How NO modulates ion channels to affect neuronal functions is not well understood. In gastropods, NO has been implicated in regulating the feeding motor program. The buccal motoneuron, B19, of the freshwater pond snail Helisoma trivolvis is active during ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Circulation Research
سال: 2003
ISSN: 0009-7330,1524-4571
DOI: 10.1161/01.res.0000064585.95749.6d